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A REMARK ON A PAPER OF F. CHIARENZA AND M.

FRASCA

N.V. KRYLOV

Abstract. In 1990 F. Chiarenza and M. Frasca published a paper in
which they generalized a result of C. Fefferman on estimates of the
integral of |bu|p through the integral of |Du|p for p > 1. Formally their
proof is valid only for d ≥ 3. We present here further generalization
with a different proof in which D is replaced with the fractional power
of the Laplacian for any dimension d ≥ 1.

Let an integer d ≥ 1 and let R
d be a Euclidean space of points x =

(x1, ..., xd). Fix α ∈ (0, d) and consider the Riesz potential

Rαf(x) =

∫

Rd

f(x+ y)

|y|d−α
dy.

We denote by Br(x) the open ball of radius r centered at x, Br = Br(0),
Br the collection of Br(x), S1 = {|x| = 1}. Our main result is the following,
in which r, p,A are some numbers and b = b(x) is a measurable function.

Theorem 1. Assume α ≤ r, 1 < r < p ≤ d, b ≥ 0, f ∈ Lr, and for any
ρ > 0 and B ∈ Bρ.

(

∫

–
B
bp dx

)1/p
≤ Aρ−α.

Then

I :=

∫

Rd

br|Rαf |
r dx ≤ N(α, d, r, p)Ar

∫

Rd

|f |r dx. (0.1)

Below by N we denote generic constants depending only on α, d, r, p, q.

Corollary 2. If u ∈ C∞
0 (Rd), then

∫

Rd

br|u|r dx ≤ NAr

∫

Rd

∣

∣(−∆)α/2u|r dx

and, if α = 1 and hence d ≥ 2, (the Chiarenza-Frasca result)
∫

Rd

br|u|r dx ≤ NAr

∫

Rd

|Du|r dx.

Indeed, f := (−∆)α/2u satisfies f ∈ Lr and Rαf = u and the Lr-norms
of Du and (−∆)1/2u are equivalent.
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Remark 3. The author have used the Chiarenza-Frasca theorem in a few
papers leading to [5] about strong solutions of Itô’s equations. Theorem 1
paves the way to treat equations driven by Lévy rather than Wiener pro-
cesses.

We prove Theorem 1 adapting to the “elliptic” setting the proof of The-
orem 4.1 of [4]. We need two auxiliary and certainly well-known results in
which M is the Hardy-Littlewood maximal operator.

Lemma 4. If 1 < q ≤ p, it holds that

Rα(b
q) ≤ NA(M(bq))1−1/q.

Proof. We have

Rαb
q(0) = N

∫ ∞

0
rα−1

∫

S1

bq(rθ)σ(dθ) dr

= N

∫ ∞

0
rα−d d

dr

∫

Br

bq dx dr

≤ N

∫ ∞

0
rα−d−1

∫

Br

bq dx dr = N

∫ ρ

0
+N

∫ ∞

ρ

≤ NραM(bq) +Nρα−qαAq,

where we used that
∫

–
Br

bq dx ≤
(

∫

–
Br

bp dx
)q/p

≤ Aqr−qα.

For

ρ−qα = M(bq)/A−q, ρα = A[M(bq)]−1/q

we get the result. �

Lemma 5. For any ρ > 0

I :=

∫

Rd

bpMIBρ dx ≤ NApρd−pα. (0.2)

Proof. We have

MIBρ ≤ N(IBρ + I|x|>ρ
ρd

|x|d
)

and
∫

Rd

bpIBρ ≤ NApρd−pα,

ρd
∫ ∞

ρ
r−d d

dr

∫

Br

bp dx dr ≤ dρd
∫ ∞

ρ
r−d−1

∫

Br

bp dx dr

≤ NρdAp

∫ ∞

ρ
r−1−pα dr = Nρd−pαAp.

This yields the result. �
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Proof of Theorem 1. It suffices to concentrate on f ≥ 0. Then first
assume that bp ∈ A1, that is M(bp) ≤ Nbp. Observe that for v = Rαf we
have

I =

∫

Rd

(

brvr−1
)

Rαf dx =

∫

Rd

Rα

(

brvr−1
)

f dx ≤ ‖f‖Lr

∥

∥Rα

(

brvr−1
)∥

∥

Lr′
,

(0.3)
where r′ = r/(r − 1).

Next, take γ > 0, such that (1 + γ)r ≤ p, 1 + γr′ ≤ p, and r ≥ 1 + γ.
Note that

Rα

(

brvr−1
)

= Rα

(

b1+γ
(

br−1−γvr−1
))

≤
(

Rα

(

b(1+γ)r)
)1/r(

Rα

(

br−γr′vr)
)(r−1)/r

.

It follows that
∥

∥Rα

(

brvr−1
)∥

∥

Lr′
≤

(

∫

Rd

br−γr′vrRα

[(

Rα

(

b(1+γ)r)
)1/(r−1)]

dx
)(r−1)/r

.

Now in light of (0.3) we see that, to prove the theorem in our particular
case, it only remains to show that

Rα

[(

Rα

(

b(1+γ)r)
)1/(r−1)]

≤ Nbγr
′

Ar′ . (0.4)

By observing that 1 < (1 + γ)r ≤ p and using Lemma 4 we get that

Rα

(

b(1+γ)r
)

≤ NA
(

M
(

b(1+γ)r
))1−1/(r+γr)

,

where by assumption and Hölder’s inequality
(

M
(

b(1+γ)r
))1−1/(r+γr)

=
[(

M
(

b(1+γ)r
))1/(r+γr)](1+γ)r−1

≤ Nb(1+γ)r−1 = Nbr−1+γr.

Hence,

Rα

[(

Rα

(

b(1+γ)r)
)1/(r−1)]

≤ NA1/(r−1)Rαb
1+γr′ .

By Lemma 4

Rαb
1+γr′ ≤ NA(M(b1+γr′))1−1/(1+γr′) ≤ NAbγr

′

.

This yields (0.4) and proves the lemma in our particular case.
We now get rid of the assumption that M(bp) ≤ Nbp as in [1]. For

p0 = (r + p)/2, p1 = (r + p0)/2 we have bp1 ≤ (M(bp0))p1/p0 := b̃p1 and

since p1/p0 < 1, b̃p1 is an A1-weight with the A1-constant depending only

on p1/p0 (see, for instance, [3], p. 158). Therefore, (0.1) holds with b̃ in
place of b and it only remains to show that for any x, ρ,

∫

Bρ(x)
b̃p1 dx ≤ Nρd−p1αAp1 . (0.5)

Of course, we may assume that x = 0.
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Then by Hölder’s inequality we see that the left-hand side of (0.5) is less
than

Nρd(p−p1)/p
(

∫

Rd

(M(bp0))p/p0IBρ dx
)p1/p

,

where the integral by a Fefferman-Stein Lemma 1, p. 111 of [2] and the fact
that p/p0 > 1 is dominated by

N

∫

Rd

bpMIBρ dx ≤ NApρd−pα,

where we used Lemma 5. Hence,
∫

Bρ

b̃p1 dx ≤ Nρd(p−p1)/pAp1ρp1d/p−p1α

which is (0.5). The theorem is proved. �
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